edexcel

Mark Scheme (Results)

Summer 2015

IAL Chemistry (WCH05/01)

Abstract

Edexcel and BTEC Qualifications Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code IA041114*
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
1	C		1

Question Number	Correct Answer	Reject	Mark
2	A		1

Question Number	Correct Answer	Reject	Mark
3	B		1

Question Number	Correct Answer	Reject	Mark
4	C		1

Question Number	Correct Answer	Reject	Mark
5	D		1

Question Number	Correct Answer	Reject	Mark
6	D		1

Question Number	Correct Answer	Reject	Mark
7	A		1

Question Number	Correct Answer	Reject	Mark
8	C		1

Question Number	Correct Answer	Reject	Mark
9	B		1

Question Number	Correct Answer	Reject	Mark
10	A		1

Question Number	Correct Answer	Reject	Mark
11	B		1

Question Number	Correct Answer	Reject	Mark
12	B		1

Question Number	Correct Answer	Reject	Mark
13	C		1

Question Number	Correct Answer	Reject	Mark
14	C		1

Question Number	Correct Answer	Reject	Mark
15	A		1

Question Number	Correct Answer	Reject	Mark
16	A		1

Question Number	Correct Answer	Reject	Mark
17	B		

Question Number	Correct Answer	Reject	Mark
18	D		

Question Number	Correct Answer	Reject	Mark
19	B		

Question Number	Correct Answer	Reject	Mark
20	D		

Total for Section $A=20$ marks

Section B

Question Number	Acceptable Answer	Reject	Mark
$21(\mathrm{a})(\mathrm{i})$	$\mathrm{Fe}(\mathrm{s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{FeSO}_{4}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$		
OR		1	
	$\mathrm{Fe}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$ OR ionic equations including sulfate ions OR multiples		

Question Number	Acceptable Answer	Reject	Mark
21 (a)(ii)	Otherwise the Fe $^{2+}$ formed will oxidize ALLOW So air / oxygen cannot enter the flask To prevent reaction with air /oxygen (1)	Iron/steel oxidized	2
	Hydrogen can escape through the slit OR So pressure does not build up (1) IGNORE Acid spray		

Question Number	Acceptable Answer	Reject	Mark
21(a)(iii)	Transfer the reaction mixture to a ($250 \mathrm{~cm}^{3}$) volumetric/graduated flask ALLOW standard flask (Rinse conical flask and) add washings to the volumetric flask Make solution up to the mark (with distilled water/sulfuric acid) and then mix ALLOW any indication of mixing IGNORE Filtration	Using other liquids	3

Question Number	Acceptable Answer	Reject	Mark
$21(\mathrm{a})(\mathrm{iv})$	$5 \mathrm{Fe}^{2+}+\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}$ $\rightarrow 5 \mathrm{Fe}^{3+}+\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$		1
	OR multiples Ignore state symbols even if incorrect		

Question Number	Acceptable Answer	Reject	Mark
21(a) (v)	```Amount \(\mathrm{MnO}_{4}^{-}=22.15 \times 0.0195 / 1000\) \(=4.31925 \times 10^{-4}\) ans* Amount \(\mathrm{Fe}^{2+}=5 \mathrm{x}\) ans* \(=2.159625 \times 10^{-3}\) ans** Mass of iron in wire \(=10 x^{* *} \times 55.8\) (1) \(=1.20507\) (g) ans*** \(\%\) purity \(=100 \times\) ans*** \(/ 1.25\) \(=96.40566=96.4 \%\) \\ Ignore rounding errors until final answer \\ Correct answer (96.4\%) with or without working scores 4 \\ ALLOW \\ Use of \(\operatorname{Ar}(\mathrm{Fe})=56\) when \\ Amount \(\mathrm{MnO}_{4}^{-}=22.15 \times 0.0195 / 1000\) \[\begin{equation*} =4.31925 \times 10^{-4} \text { ans* } \tag{1} \end{equation*} \] \\ Amount \(\mathrm{Fe}^{2+}=5 \times\) ans* \[\begin{equation*} =2.159625 \times 10^{-3} \text { ans** } \tag{1} \end{equation*} \] \\ Mass of iron in wire \(=10 \times * * \times 56\) \\ Mass of iron in wire \(=1.20939\) \\ \(\%\) purity \(=96.7512=96.8 \%\) \\ Ignore intermediate rounding until final answer \\ Correct answer (96.8\%) with or without working scores 4 \\ TE on each stage in the calculation \\ \% purity > 100 scores max 2```	Answer not to 3 SF Answer not to 3 SF	4

Question Number	Acceptable Answer	Reject	Mark
$21(\mathrm{a})(\mathrm{vi})$	Colourless / pale yellow to (pale) pink / first permanent pink	Purple Just '(pale) pink'	1

Question Number	Acceptable Answer	Reject	Mark
21(a)(vii)	(More manganate(VII) is needed to oxidize Fe^{2+}, so) titre will be larger Stand alone mark Because the Mn oxidation number changes from 7 to 4 (rather than 2) OR Mn accepts fewer electrons per mole (Brown precipitate is) manganese(IV) oxide / MnO_{2} ALLOW $\begin{equation*} \mathrm{Mn}(\mathrm{OH})_{4} \tag{1} \end{equation*}$ IGNORE References to inaccurate / inconsistent titre values	$\mathrm{Mn}(\mathrm{OH})_{2}$	3

Question Number	Acceptable Answer	Reject	Mark
21(b)(i)	Anodic area: $\mathrm{Fe}^{2+}+2 \mathrm{e}\left({ }^{-}\right) \rightleftharpoons \mathrm{Fe}$ $\left(E^{\circ}=-0.44 \mathrm{~V}\right)$ OR $\begin{equation*} \mathrm{Fe} \rightleftharpoons \mathrm{Fe}^{2+}+2 \mathrm{e}\left(^{-}\right) \tag{1} \end{equation*}$ Cathodic area: $\begin{equation*} \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}\left(^{-}\right) \rightleftharpoons 4 \mathrm{OH}^{-}\left(E^{\ominus}=+0.40 \mathrm{~V}\right) \tag{1} \end{equation*}$ ALLOW $1 / 2 \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}\left(^{-}\right) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}\left(E^{\circ}=+1.23 \mathrm{~V}\right)$ Penalise omission of electrons or use of cell diagrams once only Anode and cathode reversed max 1. IGNORE State symbols even if incorrect Single arrow in equations		2

Question Number	Acceptable Answer	Reject	Mark
$21(\mathrm{~b})(\mathrm{ii})$	$E_{\text {cell }}^{\circ}=(+) 0.40-(-0.44)=$ $(+) 0.84(\mathrm{~V})$ ALLOW $E_{\text {cell }}=(+) 1.23-(-0.44)=$ $(+) 1.67(\mathrm{~V})$ Correct answer with no working scores 1		

Question Number	Acceptable Answer	Reject	Mark
21 (b) (iii)	Dissolved salt makes the w ater a better conductor (of ions) OR The solution acts like a salt bridge OR Makes it an (effective) electrolyte OR Improves the flow of ions through the solution ALLOW Improves the flow of electrons through the metal	Improves the flow of ions through the metal	Improves the flow of electrons through the solution

Question Number	Acceptable Answer	Reject	Mark
21(b)(iv)	Magnesium has a more negative E° (allow more reactive) and so reduces the Fe ${ }^{2+}$ OR Suppresses the oxidation of iron OR forces the iron (in the absence of oxygen) to act as the cathode ALLOW Mg corrodes / oxidizes in preference to / faster than (the Fe / steel) OR Magnesium acts as a sacrificial anode	Just 'sacrificial protection'	

Total for Question $21=20$ marks

Question Number	Acceptable Answer	Reject	Mark
22(a)(i)	$\begin{align*} & {\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}} \\ & \text { ALLOW }\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+} \tag{1} \end{align*}$ $\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}$ ALLOW Cu(OH) ${ }_{2}$ $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ ALLOW $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ ALLOW Ligand in any order Omission of square brackets	$\mathrm{Cu}^{2+}(\mathrm{aq})$ $\begin{equation*} \left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} \tag{1} \end{equation*}$	3

Question Number	Acceptable Answer	Reject	Mark
22(a)(ii)	(3)d orbitals / (3)d subshell split (by the attached ligands) Electrons are promoted (from lower to higher energy d orbital(s) / levels) OR Electrons move from lower to higher energy (d orbital(s) / levels) ALLOW d-d transitions occur /electrons are excited (1) Absorbing energy /photons of a certain frequency (in the visible region) ALLOW Absorbing light Reflected / transmitted / remaining light is coloured / in the visible region ALLOW Complementary colour seen Reflected / transmitted / remaining light / frequency is seen Penalise omission of (3)d once only. Ignore reference to electrons relaxing / dropping to the ground state	Orbital / shell / subshells split d-d splitting Emitted 'Reverse' for 'complementary'	4

Question Number	Acceptable Answer	Reject	Mark
22(a)(iii)	The (different) ligands split the (3)d orbitals / subshell to a different extent (So) the energy absorbed / reflected / transmitted is different OR Radiation (ALLOW light) is at a different frequency	Orbital / shell / subshells unless penalised in 22(a)(ii) Emitted unless penalised in 22(a)(ii)	2

Total for Question $22=14$ marks

Question Number	Acceptable Answer	Reject	Mark
$23(\mathrm{~b})(\mathrm{i})$	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Cl}_{2}$		1

Question Number	Acceptable Answer	Reject	Mark
23(b)(ii)	All three correct scores 2 Any two correct scores 1 (The following combinations of chlorine isotopes occur in Q:)	Just chlorine has isotopes'	2
	${ }^{35} \mathrm{Cl}$ and ${ }^{35} \mathrm{Cl}$ (with MS peak at 126) ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$ (with MS peak at 128) ${ }^{37} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$ (with MS peak at 130) ALLOW Any representations of pairs of chlorine atomsAny reference to carbon-13		
If none of the above marks is scored then A molecule of Q has tw o chlorine atoms and the tw o isotopes are present scores 1			

Question Number	Acceptable Answer	Reject	Mark
$23(\mathrm{~b})(\mathrm{iii})$	${ }^{35} \mathrm{Cl}$ is more abundant than ${ }^{37} \mathrm{Cl}$	${ }^{35} \mathrm{Cl}$ is more stable	1

Question Number	Acceptable Answer	Reject	Mark
23(b)* (iv)	 (2-oxobutanoic acid) (3-oxobutanoic acid) ALLOW CH_{3} and OH Explanation (in any order) R must be a diol / have 2 OH group Each OH group reacts with sodium to give 0.5 mol of H_{2} Because the amount of H_{2} is halved both OH groups are oxidized but one is oxidized to a carboxylic acid / COOH and the other to a ketone group ALLOW Because the amount of H_{2} is halved only one of the two OH groups remains		5

Question Number	Acceptable Answer	Reject	Mark
23(b)(v)	(yellow precipitate) is iodoform / (1) triiodomethane / CHI		2
	IGNORE "Iodoform test"		
	positive iodoform test given by CH $_{3}$ CO(-R)/ methyl ketone (so S must be 3-oxobutanoic acid / structure identified from (b)(iv))		
ALLOW CH3CHOH(-R) /secondary 2-ol if this structure is given in 23b(iv) (1)			

Question Number	Acceptable Answer	Reject	Mark
23(b)(vi)	butane-1,3-diol ALLOW butan-1,3-diol Any reasonable representation of the organic product Balanced equation These two marks may be awarded for equation involving any diol COMMENT Do not penalise O-Na for final structure		3

Total for Question $23=16$ marks Total for Section $B=50$ marks

Section C

Question Number	Acceptable Answer	Reject	Mark
24(a)(i)	CH2		
	ALLOW Positive charge on any part of the carbocation Structural / fully displayed / skeletal formulae	or	

Question Number	Acceptable Answer	Reject	Mark
24(a)(ii)	$\mathrm{X}=\mathrm{Cl} / \mathrm{Br} / \mathrm{I}$ OR structural / fully displayed / skeletal formulae OR 3- chloro/bromo/iodo prop(-1-)ene No TE on incorrect electrophile in (a)(i)	name without ' 3 '	1

Question Number	Acceptable Answer	Reject	Mark
$\begin{aligned} & 24 \\ & (\mathrm{a})(\mathrm{iii}) \end{aligned}$	 TE on incorrect electrophile in (a)(i) If benzene used instead of substituted benzene OR If final product not $1,2,4$ only MP1 \& 2 scored Curly arrow from on / within the circle to positive C ALLOW Curly arrow from anywhere within the hexagon Arrow to any part of the electrophile including to the + charge (which can be anywhere on electrophile), OR Arrow to a point at least half the distance between ring and electrophile Intermediate structure including charge with horseshoe covering at least 3 carbon atoms, and facing the tetrahedral carbon and with some part of the positive charge within the horseshoe. IGNORE substituent errors (incorrect position on ring or bond to substituent) at this marking point ALLOW dotted horseshoe Curly arrow from $\mathrm{C}-\mathrm{H}$ bond to anywhere in the benzene ring reforming delocalized structure of a correct stable molecule. Ignore any involvement of $\mathrm{AlCl}_{4}{ }^{-}$in the final step Correct Kekulé structures score full marks	Curly arrow on or outside the hexagon Partial bonds to H or CH_{3} except for dot and wedge in 3-D structure	3

Question Number	Acceptable Answer	Reject	Mark
24(b)(i)	Stand alone marks Geometric / E-Z / cis-trans isomerism (1) Because isoeugenol has (two) different groups attached to each of the carbon atoms of the double bond	Optical isomerism	ALLOW Because eugenol has two hydrogen atoms on one of the carbon atoms in the C=C (1)
IGNORE References to the barrier to free rotation about the C=C			

Question Number	Acceptable Answer	Reject	Mark
24(b)* (ii)	If no other mark is scored 'both eugenol and isoeugenol have eight peaks' scores 1 Candidates are only expected to interpret the spectra using knowledge of the $(n+1)$ rule. El THER The only (significant) difference is likely to be (in the peak areas / heights) due to the protons on the alkene chain This mark may be awarded if the use of the alkene chain is indicated but not stated Both will have three sets of peaks due to the three sets of protons on the alkene chain (1) The alkene chain will give two doublets and a quintet in both isomers In isoeugenol the doublets will have different peak areas / heights under the peaks / peak heights in ratio $1: 3$ whereas in eugenol the doublets will be the same height OR Eugenol has areas / heights in the ratio 2:1:2:1:1:1:1:3 and isoeugenol has peak areas / heights in the ratio $3: 1: 1: 1: 1: 1: 1: 3$ The alkene chain will give two doublets and a quintet in both isomers In isoeugenol the doublets will have different peak areas / heights under the peaks / peak heights in ratio $1: 3$ whereas in eugenol the doublets will be the same height OR The only (significant) difference likely to be in the splitting pattern of the peaks due to the protons on the alkene chain In eugenol the protons at the end of the alkene chain are in different environments so eugenol will have four sets of peaks whereas isoeugenol will have three sets of peaks (1)		4

$24(\mathrm{~b})^{*}(\mathrm{ii})$ (cont)	In eugenol the alkene chain will give three doublets and a quintet (1)	In isoeugenol the alkene chain will give two doublets and a quintet	(1)

Question Number	Acceptable Answer	Reject	Mark
24(b)(iii)	$\mathrm{V}_{2} \mathrm{O}_{5}$ oxidizes isoeugenol / alkene substituent (to the aldehyde \& ketone) (and $\mathrm{V}(\mathrm{V})$ is reduced to a lower oxidation state) OR Explanation in terms of isoeugenol reducing $\mathrm{V}_{2} \mathrm{O}_{5}$ $\mathrm{H}_{2} \mathrm{O}_{2}$ oxidizes vanadium back to the +5 oxidation state Mechanism with $\mathrm{H}_{2} \mathrm{O}_{2}$ oxidizing $\mathrm{V}_{2} \mathrm{O}_{5}$ as the first step scores max 1 If no other mark is scored 'vanadium (V) is reduced then oxidized' scores 1 Ignore any reference to adsorption and desorption on the surface.	Just ${ }^{\prime} \mathrm{V}_{2} \mathrm{O}_{5}$ oxidizes'	2

| Question
 Number Acceptable Answer Reject Mark
 24(b) (iv) Vanillin has an aldehyde group, suggesting a
 peak in the range 1740-1720 $\left(\mathrm{cm}^{-1}\right)$
 whereas methyl vanillyl ketone has a ketone
 group suggesting a peak in the range
 1700-1680 (cm^{-1})
 (The peaks occur at different wavenumbers
 so the ketone peak could be seen) (1) 2
 These are general ranges and might overlap
 in the particular spectra
 OR
 Vanillin is an aromatic aldehyde
 OR
 Concentration of the ketone might be too
 small for the peak to be observed (1) | | |
| :---: | :--- | :---: | :---: |

Question Number	Acceptable Answer	Reject	Mark
24(c)(i)	$6\left(\right.$ moles of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ per mole $\left.\mathrm{CH}_{3} \mathrm{O}\right)$		2
	(1)		
	In the sequence $\mathrm{ROCH}_{3} \equiv \mathrm{CH}_{3} \mathrm{I} \equiv \mathrm{IBr} \equiv \mathrm{HIO}_{3} \equiv 3 \mathrm{I}_{2} \equiv$ $6 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}$	Partial sequences	

Total for Question 24 = 20 marks Total for Section $C=20$ marks

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

